Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimization of semipolar GaInN/GaN blue/green light emitting diode structures on {1-101} GaN side facets

Identifieur interne : 006095 ( Main/Repository ); précédent : 006094; suivant : 006096

Optimization of semipolar GaInN/GaN blue/green light emitting diode structures on {1-101} GaN side facets

Auteurs : RBID : Pascal:08-0381842

Descripteurs français

English descriptors

Abstract

Bluish-green semipolar GaInN/GaN light emitting diodes (LEDs) were investigated as possible candidates for high-brightness devices even in the long wavelength visible regime. To combine the high material quality known from c-GaN and the advantages of a reduced piezoelectric field, the LED structures were realized on the {1101} side facets of selectively grown GaN stripes with triangular cross section. Structural investigations using transmission electron microscopy, scanning electron microscopy, high resolution x-ray diffraction, and atomic force microscopy have been performed and could be related to the luminescence properties in photoluminescence and cathodoluminescence. The defect-related luminescence peaks at 3.3 eV and 3.42eV typically observed in planar non- and semipolar GaN structures as fingerprints of prismatic and basal plane stacking faults, respectively, could be eliminated in our facet LED structures by optimized growth conditions. Furthermore, indium incorporation efficiency for these {1101} facets is found to be about 50% higher as compared to c-plane growth, what helps significantly to achieve longer wavelength emission in spite of the reduced quantum confined Stark effect in such non- and semipolar materials. Combining these findings, we could realize a bluish-green semipolar light emitting diode on the side facets of our GaN stripes. Continuous wave on-wafer optical output powers as high as 240 μW @ 20 mA could be achieved for about 500 nm emission wavelength in electroluminescence measurements. The external efficiency was nearly constant for the investigated current range. Furthermore, the relatively small wavelength shift of about 3 nm for currents between 10mA and 100 mA confirmed the reduced piezoelectric field in our LED structures.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:08-0381842

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optimization of semipolar GaInN/GaN blue/green light emitting diode structures on {1-101} GaN side facets</title>
<author>
<name sortKey="Wanderer, T" uniqKey="Wanderer T">T. Wanderer</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institute of Optoelectronics, Ulm University</s1>
<s2>89069 Ulm</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hertkorn, J" uniqKey="Hertkorn J">J. Hertkorn</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institute of Optoelectronics, Ulm University</s1>
<s2>89069 Ulm</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lipski, F" uniqKey="Lipski F">F. Lipski</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institute of Optoelectronics, Ulm University</s1>
<s2>89069 Ulm</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Br Ckner, P" uniqKey="Br Ckner P">P. Br Ckner</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institute of Optoelectronics, Ulm University</s1>
<s2>89069 Ulm</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Feneberg, M" uniqKey="Feneberg M">M. Feneberg</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institute of Semiconductor Physics, Ulm University</s1>
<s2>89069 Ulm</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schirra, M" uniqKey="Schirra M">M. Schirra</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institute of Semiconductor Physics, Ulm University</s1>
<s2>89069 Ulm</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thonke, K" uniqKey="Thonke K">K. Thonke</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Institute of Semiconductor Physics, Ulm University</s1>
<s2>89069 Ulm</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Knoke, I" uniqKey="Knoke I">I. Knoke</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Crystal Growth Laboratory, Fraunhofer IISB</s1>
<s2>91058 Erlangen</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>91058 Erlangen</wicri:noRegion>
<wicri:noRegion>Fraunhofer IISB</wicri:noRegion>
<wicri:noRegion>91058 Erlangen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Meissner, E" uniqKey="Meissner E">E. Meissner</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Crystal Growth Laboratory, Fraunhofer IISB</s1>
<s2>91058 Erlangen</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>91058 Erlangen</wicri:noRegion>
<wicri:noRegion>Fraunhofer IISB</wicri:noRegion>
<wicri:noRegion>91058 Erlangen</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chuvilin, A" uniqKey="Chuvilin A">A. Chuvilin</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Central Facility of Electron Microscopy, Ulm University</s1>
<s2>89069 Ulm</s2>
<s3>DEU</s3>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kaiser, U" uniqKey="Kaiser U">U. Kaiser</name>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Central Facility of Electron Microscopy, Ulm University</s1>
<s2>89069 Ulm</s2>
<s3>DEU</s3>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Scholz, F" uniqKey="Scholz F">F. Scholz</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institute of Optoelectronics, Ulm University</s1>
<s2>89069 Ulm</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>12 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Tübingen</region>
<settlement type="city">Ulm</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">08-0381842</idno>
<date when="2008">2008</date>
<idno type="stanalyst">PASCAL 08-0381842 INIST</idno>
<idno type="RBID">Pascal:08-0381842</idno>
<idno type="wicri:Area/Main/Corpus">006649</idno>
<idno type="wicri:Area/Main/Repository">006095</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="main">Proceedings of SPIE - The International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Atomic force microscopy</term>
<term>Blue light</term>
<term>Brightness</term>
<term>Cathodoluminescence</term>
<term>Continuous wave</term>
<term>Fingerprint identification</term>
<term>Green light</term>
<term>High resolution</term>
<term>Light emitting diode</term>
<term>Luminescence</term>
<term>Optimization</term>
<term>Optoelectronic device</term>
<term>Performance evaluation</term>
<term>Photoluminescence</term>
<term>Piezoelectricity</term>
<term>Planar technology</term>
<term>Quantum confined Stark effect</term>
<term>Scanning electron microscopy</term>
<term>Stacking fault</term>
<term>Transmission electron microscopy</term>
<term>Wafer</term>
<term>X ray diffraction</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Optimisation</term>
<term>Lumière bleue</term>
<term>Lumière verte</term>
<term>Diode électroluminescente</term>
<term>Brillance</term>
<term>Piézoélectricité</term>
<term>Microscopie électronique transmission</term>
<term>Microscopie électronique balayage</term>
<term>Haute résolution</term>
<term>Diffraction RX</term>
<term>Microscopie force atomique</term>
<term>Luminescence</term>
<term>Photoluminescence</term>
<term>Cathodoluminescence</term>
<term>Technologie planaire</term>
<term>Dactyloscopie</term>
<term>Défaut empilement</term>
<term>Evaluation performance</term>
<term>Effet Stark confinement quantique</term>
<term>Onde entretenue</term>
<term>Pastille électronique</term>
<term>Dispositif optoélectronique</term>
<term>0779</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bluish-green semipolar GaInN/GaN light emitting diodes (LEDs) were investigated as possible candidates for high-brightness devices even in the long wavelength visible regime. To combine the high material quality known from c-GaN and the advantages of a reduced piezoelectric field, the LED structures were realized on the {1101} side facets of selectively grown GaN stripes with triangular cross section. Structural investigations using transmission electron microscopy, scanning electron microscopy, high resolution x-ray diffraction, and atomic force microscopy have been performed and could be related to the luminescence properties in photoluminescence and cathodoluminescence. The defect-related luminescence peaks at 3.3 eV and 3.42eV typically observed in planar non- and semipolar GaN structures as fingerprints of prismatic and basal plane stacking faults, respectively, could be eliminated in our facet LED structures by optimized growth conditions. Furthermore, indium incorporation efficiency for these {1101} facets is found to be about 50% higher as compared to c-plane growth, what helps significantly to achieve longer wavelength emission in spite of the reduced quantum confined Stark effect in such non- and semipolar materials. Combining these findings, we could realize a bluish-green semipolar light emitting diode on the side facets of our GaN stripes. Continuous wave on-wafer optical output powers as high as 240 μW @ 20 mA could be achieved for about 500 nm emission wavelength in electroluminescence measurements. The external efficiency was nearly constant for the investigated current range. Furthermore, the relatively small wavelength shift of about 3 nm for currents between 10mA and 100 mA confirmed the reduced piezoelectric field in our LED structures.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA05>
<s2>6894</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optimization of semipolar GaInN/GaN blue/green light emitting diode structures on {1-101} GaN side facets</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Gallium nitride materials and devices III : 21-24 January 2008, San Jose, California, USA</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>WANDERER (T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HERTKORN (J.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LIPSKI (F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>BRÜCKNER (P.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FENEBERG (M.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SCHIRRA (M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>THONKE (K.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>KNOKE (I.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>MEISSNER (E.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>CHUVILIN (A.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>KAISER (U.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>SCHOLZ (F.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>MORKOC (Hadis)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Institute of Optoelectronics, Ulm University</s1>
<s2>89069 Ulm</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>12 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Semiconductor Physics, Ulm University</s1>
<s2>89069 Ulm</s2>
<s3>DEU</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Crystal Growth Laboratory, Fraunhofer IISB</s1>
<s2>91058 Erlangen</s2>
<s3>DEU</s3>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Central Facility of Electron Microscopy, Ulm University</s1>
<s2>89069 Ulm</s2>
<s3>DEU</s3>
<sZ>10 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>68940V.1-68940V.9</s2>
</fA20>
<fA21>
<s1>2008</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA26 i1="01">
<s0>978-0-8194-7069-0</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000172833270170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2008 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>29 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>08-0381842</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE - The International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Bluish-green semipolar GaInN/GaN light emitting diodes (LEDs) were investigated as possible candidates for high-brightness devices even in the long wavelength visible regime. To combine the high material quality known from c-GaN and the advantages of a reduced piezoelectric field, the LED structures were realized on the {1101} side facets of selectively grown GaN stripes with triangular cross section. Structural investigations using transmission electron microscopy, scanning electron microscopy, high resolution x-ray diffraction, and atomic force microscopy have been performed and could be related to the luminescence properties in photoluminescence and cathodoluminescence. The defect-related luminescence peaks at 3.3 eV and 3.42eV typically observed in planar non- and semipolar GaN structures as fingerprints of prismatic and basal plane stacking faults, respectively, could be eliminated in our facet LED structures by optimized growth conditions. Furthermore, indium incorporation efficiency for these {1101} facets is found to be about 50% higher as compared to c-plane growth, what helps significantly to achieve longer wavelength emission in spite of the reduced quantum confined Stark effect in such non- and semipolar materials. Combining these findings, we could realize a bluish-green semipolar light emitting diode on the side facets of our GaN stripes. Continuous wave on-wafer optical output powers as high as 240 μW @ 20 mA could be achieved for about 500 nm emission wavelength in electroluminescence measurements. The external efficiency was nearly constant for the investigated current range. Furthermore, the relatively small wavelength shift of about 3 nm for currents between 10mA and 100 mA confirmed the reduced piezoelectric field in our LED structures.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00G79</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Lumière bleue</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Blue light</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Luz azul</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Lumière verte</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Green light</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Luz verde</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Diode électroluminescente</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Light emitting diode</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Diodo electroluminescente</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Brillance</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Brightness</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Brillantez</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Piézoélectricité</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Piezoelectricity</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Piezoelectricidad</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Microscopía electrónica transmisión</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Microscopía electrónica barrido</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Haute résolution</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>High resolution</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Alta resolucion</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Diffraction RX</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>X ray diffraction</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Difracción RX</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Microscopía fuerza atómica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Luminescence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Luminescence</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Luminiscencia</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Photoluminescence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Photoluminescence</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Fotoluminiscencia</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Cathodoluminescence</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Cathodoluminescence</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Catodoluminiscencia</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Technologie planaire</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Planar technology</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Tecnología planar</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Dactyloscopie</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Fingerprint identification</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Défaut empilement</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Stacking fault</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Defecto apilado</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Effet Stark confinement quantique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Quantum confined Stark effect</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Onde entretenue</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Continuous wave</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Onda continua</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Pastille électronique</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Wafer</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Pastilla electrónica</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Optoelectronic device</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Dispositivo optoelectrónico</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>0779</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fN21>
<s1>245</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Gallium nitride materials and devices. Conference</s1>
<s2>3</s2>
<s3>San Jose CA USA</s3>
<s4>2008</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 006095 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 006095 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:08-0381842
   |texte=   Optimization of semipolar GaInN/GaN blue/green light emitting diode structures on {1-101} GaN side facets
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024